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A B S T R A C T

Study region
North and South Carolina, USA.

Study focus
Intense precipitation poses risks to life and property. Its frequency can change in response

to global-scale drivers, but its spatial expression can vary seasonally and regionally, and be
dependent on how it is measured and what analysis period is used. We investigate forty-four
historical stations from the U.S. Historical Climatology Network (USHCN) across North and
South Carolina to determine trends in the pluviometric regime defined by the Expert Team on
Climate Change Detection and Indices (ETCCDI).
New hydrological insights for the region

Most of the stations in this area do not display consistent, statistically significant trends
across the suite of ETCCDI measures of precipitation amount, frequency, and intensity. In
addition, the direction, spatial patterns and cross seasonal results are not consistent for the
small number of stations that do show a trend in annual or seasonal precipitation totals. A third
of stations have a statistically significant increasing trend in the annual number of light rain
days; these generally match those with a statistically significant trend in wet days. Relatively
few stations, typically around 10 per cent, have statistically significant trends in precipitation
intensity measures. Notable exceptions include 2- and 5-day fall maximum precipitation values.
Our findings contribute to a broader literature regarding trends in the southeastern United
States (SEUS) and have significant relevance in adaptation planning that seeks to understand
the relative contribution of multiple causes of natural hazards.

1. Introduction

Increased precipitation intensity is one of many potential impacts of global climate change, one that presents risks to life
and property as well as challenges to infrastructure planning and risk/disaster management [IPCC (2012)]. As the planet warms,
atmospheric moisture-holding capacity should increase, following the Clausius–Clapeyron equation (C-C), at 7% per ◦C (Trenberth
et al., 2003). Recent research has documented connections between moisture availability and increases in observed precipitation
intensity using the empirical record or model simulations at global, continental, and regional scales (O’Gorman and Schneider, 2009;
Fischer and Knutti, 2015; Forestieri et al., 2018; Huang et al., 2017; Grabowski, 2019; Kunkel et al., 2020a,b; Tabari, 2020).
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In the southeastern United States (SEUS), moisture content controls on precipitation intensity have been generally consistent with
he C–C relationship (Easterling et al., 2013; Ivancic and Shaw, 2016). However, as in other regions, precipitation rates respond in
complex way, dependent on moisture availability, but also on stability changes, storm dynamics, and regional to local geography

Zhang et al., 2017). SEUS storm systems vary seasonally, and geographic features such as the proximity to warm water bodies and
rography strongly influence heavy precipitation events. In the cool season, heavy precipitation is typically caused by mid-latitude
yclones or associated fronts; their frequency and magnitude is influenced by El Niño Southern Oscillation (ENSO) phase (Ropelewski
nd Halpert, 1986; Gershunov and Barnett, 1998). During the warm season, intense precipitation events are typically driven by
ropical systems or slow-moving convective cells (Konrad, 2001; Shepherd et al., 2007; Knight and Davis, 2009; Konrad and Perry,
009; Kunkel et al., 2012; Skeeter et al., 2018). This complexity could lead to large spatial variations in precipitation scaling across
he SEUS. In addition to the complexity of causation, the very measure of precipitation intensity presents challenges (Pendergrass,
018). While a variety of standards are recognized (Zhang et al., 2011a; Alexander et al., 2006, 2019), only a few previous studies
onsidered a wide suite of metrics across long time frames such as those documented here. Specifically, the investigation presented
erein is to our knowledge unprecedented in the SEUS with respect to record length, number of stations, and number of precipitation
easures.

Prior research documenting the nature of precipitation intensity changes in the SEUS reveals the challenges associated with its
easurement, and shows how choice of metric (e.g., measures of precipitation frequency, duration, or intensity), analysis period,

patial extent, and season can influence results (Bishop et al., 2019; Brown et al., 2019; Powell and Keim, 2015; Skeeter et al.,
018; Kam et al., 2014; Diem, 2013). Several findings emerge from this work. First, in the post-World War II era, precipitation
ntensity increased in many parts of the Southeast. For example, Powell and Keim (2015) show 1948–2012 increases in several of
he Expert Team on Climate Change Detection and Indices (ETCCDI) for precipitation intensity (Alexander et al., 2006). Kunkel
t al. (2020a) document increases, from 1949 to 2016, in 1- to 5-day accumulation for events with an estimated 1- to 5-year
ecurrence interval. Easterling et al. (2017) show a 49% regional increase in the number of 5-year, 2-day precipitation events,
nd a 27% increase in 99th-percentile events from 1958 to 2016. Second, the results for trends extending from the early 20th
entury are less definitive. Using 1901–2016 data, Easterling et al. (2017) found a 16% increase in the 1-day precipitation maxima
xpected every five years, and a 58% increase in the number of 5-year, 2-day events. By contrast, Kunkel et al. (2012) found
o increasing trend in daily extremes for 1-in-5-year events in the Southeast using 1908–2009 data and subdividing trends by
torm type. Similarly, Bonnin et al. (2011) found that the magnitude of Southeast precipitation intensity trends from 1908–2007
as small, particularly as measured against interannual and interdecadal variability. Third, results differ across seasons with the
ost pronounced increases observed in autumn (Easterling et al., 2017; Park Williams et al., 2017; Skeeter et al., 2018). Fourth,
recipitation intensity trends vary spatially across the region. In particular, there are many stations in North and South Carolina
ith no precipitation intensity trend, or with smaller trends than stations further north or west, or when compared against results
ggregated across the SEUS (Powell and Keim, 2015; Brown et al., 2019; Skeeter et al., 2018; Brown et al., 2020; Kunkel et al.,
020a).

This study explores the ‘‘Carolinas anomaly’’ expanding upon the best aspects of prior work by analyzing as many stations as
ossible across an extensive time period using a wide suite of metrics related to annual, seasonal, and monthly precipitation amounts,
requency, and intensity. Examining a smaller region allows us to take advantage of a longer record (Park Williams et al., 2017),
nd one that includes some of the geographic features (e.g., orography and coastal proximity) that influence heavy precipitation
Fig. 1). In addition, the use of a wide range of metrics allows us to explore inter-relationships between variables.

. Data and methods

We used the Historical Climatology Network (USHCN) daily data set. The USHCN is derived predominantly from the National
ceanic and Atmospheric Administration (NOAA) Cooperative Observer Program (COOP) Network using sites selected for overall

patial coverage, record length, data completeness, and historical stability (NOAA, 2021). The USHCN is a high quality data set
ncluding basic meteorological variables from 1218 observing stations across the United States. The period of record varies for each
tation, but all USHCN stations must meet requirements regarding record length, percent missing data, number of station moves, and
ther changes affecting data homogeneity (Menne et al., 2006). Before performing statistical and trend analyses, the resulting dataset
as subjected to a thorough quality check to identify outliers that could affect the trend analysis. To this end, the occurrence of

ecord high precipitation in the dataset was carefully cross-checked and validated only if the observation was confirmed by records
t a nearby station and/or relevant metadata (e.g., local or national news). Daily records from 44 stations in North and South
arolina were selected to maximize temporal and spatial coverage (Tables 1 and 2). Each record starts in approximately 1900 (two
egin in the 1910s); most extend to 2019, the earliest ends in 1999. Since incomplete years affect trend estimates, we filtered out
ears with more than 30 missing days, i.e., including only those stations with less than 10% of missing daily records (Powell and
eim, 2015). Tables 1 and 2 summarize period of record, geographic coordinates, and total number of observations for each station

n the two regions.
Our first analysis was designed to identify similarities in precipitation patterns in order to characterize subregions across the

eography of the Carolinas. We selected seven reference stations spread geographically south to north and from the coast to
he mountains, and with relatively complete records: Asheville, NC; Conway, SC; Effingham, SC; Hendersonville, NC; Randleman,
C; Walhalla, SC; and Willard, NC. We applied a Wilcoxon rank-sum test to detect similarity in monthly, seasonal, and annual
recipitation between these reference stations and all remaining stations. Each station with a 𝑝-value of 0.05 (95th% confidence) or
2

higher was identified as having no statistically significant difference with the reference station. This method yielded three logically
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Fig. 1. Map of the United States depicting in dark green color the two Carolinas (North Carolina and South Carolina). (Source: OpenStreetMap contributors and
the GIS user community.). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
List of stations, with name, record length, coordinates, daily observations and number of years filtered out from the
analysis selected from South Carolina USHCN network.
Station Record Lat (◦) Long (◦) Daily obs. Years filtered out

Blackville 3 W 1900–1999 33.36306 −81.32917 35,017 3
Calhoun Falls 1900–2019 34.09050 −82.58830 41,422 6
Camden 3 W 1900–2001 34.24291 −80.65652 32,867 10
Catawba 1906–2019 34.85736 −80.91341 39,411 4
Chappells 2 NNW 1905–2012 34.21410 −81.88500 35,583 7
Clemson University 1900–2019 34.66036 −82.82325 42,724 3
Conway 1900–2014 33.83130 −79.05580 38,653 8
Darlington 1900–2019 34.30110 −79.87660 31,246 35
Effingham 1900–2012 34.06270 −79.75550 39,585 3
Georgetown 2 S E 1900–2005 33.36194 −79.22389 26,620 29
Greenwood 1900–2011 34.19970 −82.17110 35,787 12
Little Mountain 1900–2019 34.19950 −81.41436 40,847 8
Newberry 1900–2019 34.29165 −81.62089 33,488 28
Saluda 1903–2019 33.99185 −81.77129 35,055 19
Santuck 1900–2019 34.63500 −81.52050 40,533 9
Summerville 4 W 1900–2019 33.03660 −80.23250 35,782 16
Walhalla 1900–2019 34.75450 −83.07510 34,694 24
Winnsboro 1900–2019 34.37060 −81.08250 36,874 19
Winthrop University 1900–2019 34.93880 −81.03313 39,804 11
Yemassee 1 N 1900–2019 32.70190 −80.85180 39,019 12

organized regions representing coastal, central, and upstate portions of North and South Carolina. The main difference between
these areas is a higher summer precipitation peak near the ocean, a winter peak in the upstate, and overall lower values in the
central (inner-coastal plain and piedmont) region.

For precipitation intensity, duration, and frequency, we used the 10 ETCCDI core precipitation measures (Alexander et al., 2007;
Zhang et al., 2011b) adding a few others following definitions specified below. Because changes in precipitation vary by season
(Easterling et al., 2017), we conduct our analysis seasonally using the following standard: spring (March 1–May 31), summer (June
1–August 31), fall (September 1 –November 30) and winter (December 1–February 28/29). We calculated each index as follows:

2.0.1. Rx1day — Seasonal maximum 1-day precipitation

𝑅𝑥1𝑑𝑎𝑦𝑗 = 𝑚𝑎𝑥(𝑅𝑅𝑖𝑗 ) (1)

where 𝑅𝑅 is the daily precipitation amount on day 𝑖 in season 𝑗.
3
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Table 2
List of stations, with name, record length, coordinates, daily observations and number of years filtered out from
the analysis selected from North Carolina USHCN network.

Station Record Lat (◦) Long (◦) Daily obs. Years filters out

Asheville 1900–2019 35.59540 −82.55680 43,464 1
Banner Elk 1907–2019 36.16160 −81.87410 30,666 28
Chapel Hill 2 W 1900–2019 35.90860 −79.07940 33,306 26
Durham 1901–2013 36.04250 −78.96250 35,547 6
Edenton 1900–2019 36.01640 −76.55160 40,896 8
Elizabeth City 1912–2019 36.30960 −76.20500 33,207 16
Greenville 1900–2019 35.64000 −77.39840 34,672 11
Henderson 2 NNW 1900–2019 36.34880 −78.41193 38,998 12
Hendersonville 1 NE 1900–2019 35.32970 −82.44910 40,866 8
Kinston 7 SE 1900–2019 35.19670 −77.54320 33,930 23
Lumberton 1903–2019 34.62690 −79.02500 39,286 8
Marion 1900–2019 35.68470 −82.00840 32,803 8
Monroe 2 SE 1900–2019 34.97970 −80.52330 41,601 5
Mount Airy 2 W 1903–2019 36.49618 −80.65226 40,130 10
Murphy 4 ESE 1900–2019 35.07140 −83.96840 39,721 10
New Holland 1915–2002 35.44861 −76.21083 22,640 23
Randleman 1905–2019 35.82220 −79.79170 39,944 5
Salisbury 1900–2019 35.68360 −80.48220 38,661 13
Smithfield 1911–2019 35.51710 −78.34430 36,018 8
Southport 5N 1900–2016 33.99470 −78.00770 35,001 18
Statesville 2 NNE 1901–2019 35.80990 −80.88080 40,885 6
Tarboro 1 S 1900–2019 35.88413 −77.53857 37,971 14
Willard 4 SW 1908–2011 34.66050 −78.04540 34,659 25
Wilson 3 SW 1937–2011 35.69380 −77.94600 28,844 5

2.0.2. Rx2day — Seasonal maximum consecutive 2-day precipitation

𝑅𝑥2𝑑𝑎𝑦𝑗 = 𝑚𝑎𝑥(𝑅𝑅𝑘𝑗 ) (2)

here 𝑅𝑅𝑘𝑗 is the precipitation amount for the 2-day interval ending 𝑘, season 𝑗.

2.0.3. Rx5day — Seasonal maximum consecutive 5-day precipitation

𝑅𝑥5𝑑𝑎𝑦𝑗 = 𝑚𝑎𝑥(𝑅𝑅𝑘𝑗 ) (3)

where 𝑅𝑅𝑘𝑗 indicates the precipitation amount for the 5-day interval ending 𝑘, season 𝑗.

2.0.4. SDII — Simple precipitation intensity index

𝑆𝐷𝐼𝐼𝑗 =
∑

𝑅𝑅𝑤𝑗

𝑊

where 𝑅𝑅𝑤𝑗 is the daily precipitation amount on wet days in season 𝑗, and 𝑊 represents the number of wet days in 𝑗.

2.0.5. CDD — Consecutive dry days
Maximum number of consecutive days with RR < 1 mm. Let 𝑅𝑅𝑖𝑗 be the daily precipitation amount on day 𝑖 in period 𝑗. The

ndex counts the largest number of consecutive days where:

𝑅𝑅𝑖𝑗 < 1mm

.0.6. CWD — Consecutive wet days
Maximum number of consecutive days with 𝑅𝑅 ≥ 1 mm. Let 𝑅𝑅𝑖𝑗 be the daily precipitation amount on day 𝑖 in period 𝑗. The

ndex is then defined as the largest number of consecutive days where:

𝑅𝑅 ≥ 1𝑚𝑚
4
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Table 3
Summary of the indices used in the analysis divided in three categories: indices related to the
mean amount of precipitation, indices related to the intensity of precipitation and indices related
with the frequency of precipitation.
Amount of precipitation Intensity of precipitation Frequency of rainfall

Annual total precipitation Rx1day CWDs
Seasonal mean precipitation Rx2day CDDs
Monthly mean precipitation Rx5day Wet days
Light rain SDII
Medium rain R95pTOT
Heavy rain
Very heavy rain

2.0.7. R95pTOT
Annual total precipitation when RR > 95𝑡ℎ percentile. Let 𝑅𝑅𝑤𝑗 be the daily precipitation amount on a wet day in period 𝑖 and

let 𝑅𝑅𝑤𝑛95 be the 95𝑡ℎ percentile of precipitation on wet days 𝑤 in the record. If 𝑊 represents the number of wet days in the
eriod, then:

𝑅95𝑝𝑗 =
𝑊
∑

𝑤=1
𝑅𝑅𝑤𝑗 𝑤ℎ𝑒𝑟𝑒 𝑅𝑅𝑤𝑗 > 𝑅𝑅𝑤𝑛95 (4)

We also investigate trends in the annual number of days with rainfall in each of five categories:

.0.8. Wet days
Annual count of days when daily precipitation is ≥ 1 mm. Let 𝑅𝑅𝑖𝑗 be the daily precipitation amount on day 𝑖 in period 𝑗. The

number of wet days is then counted as the number of days when:

𝑅𝑅𝑖𝑗 ≥ 1mm (5)

2.0.9. Light rain
Annual count of days when daily precipitation is in the range ≥ 1 mm to 10 mm. Let 𝑅𝑅𝑖𝑗 be the daily precipitation amount on

day 𝑖 in period 𝑗. The number of light rain days is then counted as the number of days where:

1mm ≤ 𝑅𝑅𝑖𝑗 ≤ 10mm (6)

2.0.10. Medium rain
Annual count of days when daily precipitation is in the range > 10 mm to 20 mm. Let 𝑅𝑅𝑖𝑗 be the daily precipitation amount on

day 𝑖 in period 𝑗. The number of medium rain days is then counted as the number of days where:

10.1mm ≤ 𝑅𝑅𝑖𝑗 ≤ 20mm (7)

2.0.11. Heavy rain
Annual count of days when daily precipitation is in the range > 20 mm to 50 mm. Let 𝑅𝑅𝑖𝑗 be the daily precipitation amount on

day 𝑖 in period 𝑗. The number of heavy rain days is then counted as the number of days where:

20.1mm ≤ 𝑅𝑅𝑖𝑗 ≤ 50mm (8)

2.0.12. Very heavy rain
Annual count of days when daily precipitation is greater than 50.1 mm. Let 𝑅𝑅𝑖𝑗 be the daily precipitation amount on day 𝑖 in

period 𝑗. The number of very heavy rain days is then counted as the number of days where:

𝑅𝑅𝑖𝑗 > 50.1mm (9)

Here we divide the indices into three categories (Table 3): indices related to the mean amount of precipitation, those related to
precipitation intensity, and those related to rainfall frequency.

We employ the Mann–Kendall trend test, widely used in climatological analysis to detect trends (Wilks, 2019). The magnitude
of each time series trend was determined using Sen’s slope test (Atta-Ur and Muhammad, 2017). R-package ‘‘Trend’’ version 1.1.4
(Pohlert, 2020) was used to perform Mann–Kendall and Sen’s slope tests. The version of the Mann–Kendall test implemented in this
package works only on complete time series (i.e., without missing data), which was ensured by the removal of the incomplete years
5

as described above.



Journal of Hydrology: Regional Studies 44 (2022) 101201G. Moraglia et al.
Fig. 2. Annual mean precipitation trends for every station with 95% of confidence level. Radius scale is proportional to Sen’s slope estimator 𝛽 (mm/year);
stations with green markers present positive significant trend, stations with red markers present negative significant trend, while gray markers show stations
with no significant trend. The legend in the bottom left corner shows the maximum, minimum, and average value of 𝛽. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Seasonal mean precipitation trends for every station during every season with 95% of confidence level. Radius scale is proportional to Sen’s slope
estimator 𝛽 (mm/day); stations with green markers present positive significant trend, stations with red markers present negative significant trend, while grey
markers show stations with no significant trend. The legend in the bottom left corner shows the maximum, minimum, and average value of 𝛽. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

3. Results and discussion

Eight of forty-four stations show a significant trend in total annual precipitation. Six of these show an increasing trend and are
mostly located in the coastal region; two with decreasing trends are found in the central region (Fig. 2). Likewise, most stations
show no trend in seasonal precipitation totals and, in general, there is no overlap between the detection of seasonal and annual
trends (Fig. 3). Only three stations showed a trend in spring — two decreasing, one increasing. Five significant decreasing trends
in summer were detected in the central region, four significant decreasing trends were found in the upstate area during winter.
Only five stations showed a significant increasing trend in autumn, contrary to the autumn precipitation increases found by others
investigating larger portions of the southeastern United States that excluded the Carolinas (Bishop et al., 2019).
6
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Fig. 4. Four categories of rain trends for every station with 95% of confidence level. Radius scale is proportional to Sen’s slope estimator 𝛽 (days/year); stations
with green markers present significant positive trend, stations with red markers present significant negative trend, while grey markers show stations with no
significant trend. The legend in the bottom left corner shows the maximum, minimum, and average value of 𝛽. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fifteen stations (34%) show a significant increasing trend in the number of ‘‘light’’ rain (1–10 mm) days; they are scattered
across the entire study area (Fig. 4). Four stations, also widely scattered, show a significant decreasing trend in light rain days. The
stations showing a significant trend in light rain nearly match the stations that show a significant trend in the number of wet days
(Fig. 5). These results echo those showing large spatial variability in observed precipitation intensity [e.g., Qian et al., 2010] and
suggesting compensation across the precipitation distribution at the global scale [e.g., Thackeray et al., 2018]. Nine stations have
a significant decrease in ‘‘medium’’ rain (10–20 mm) events; only Clemson, SC, shows a significant increasing trend. ‘‘Heavy’’ rain
events (20–50 mm) significantly decreased at five stations in the coastal plain or piedmont; two had an increasing trend. Days with
rainfall amounts exceeding 50 mm (‘‘very heavy’’ rain) increased significantly at four coastal and two central sites and decreased
at two upstate sites. This last result does not appear related to the frequency of tropical systems in the last two decades, but is in
agreement with Brown et al. (2020) who found similar patterns analyzing a broader region in the SEUS and suggested their potential
relation with changes in the frequency of faster-moving frontal events or to droughts impacting the area. We conducted preliminary
analysis for all stations from their initial year through 2000, and again using only 1950–2019 data to test sensitivity to time period.
Both tests revealed only minor differences from the trends for the entire period of record. All things being equal, the lack of trends
in seasonal or annual precipitation, combined with a shift in ‘‘light rain’’ events would decrease flooding risks.

Mean values of the simple precipitation intensity index (SDII), the ratio of daily precipitation amount on wet days to the number
of wet days, are typically highest in coastal regions during summer and fall, and in the upstate during fall and winter (Supplementary
materials, Fig. 2S). We found SDII trends in 23 to 39% of all stations examined, depending on season (Fig. 6). These trends are
mixed in spring and fall, but during summer and particularly winter there is a clear trend of decreasing precipitation intensity
as measured by SDII. As evidenced by the black circles enclosing the common clusters between the two different indices, there is
a strong correlation between those stations experiencing this decreased intensity and those that show an increasing trend in the
number of light rain days, a pattern most clearly seen in winter (Fig. 7). In fall and winter, we find a related correlation between
increasing trends in wet days and increasing light rain days (Fig. 8).

Only 11% to 23% of stations exhibited a significant trend in consecutive wet days (CWD); these trends were dependent on season
and typically not of the same sign (Fig. 9). In spring and winter, we found a nearly equal number of stations with increasing or
decreasing trends. While only a fraction of all stations had a significant trend, the pattern was more consistent in summer, when the
number of CWD significantly decreased at ten stations, and in fall, when it significantly increased at eight stations. Mean consecutive
dry days (CDD) are greatest in autumn. It is also the season with the highest number of stations (41%) experiencing decreasing trends
(Fig. 10). A clear pattern of decreasing trends, albeit at fewer stations, also occurs in spring (18% of all stations) and winter (20%
of all stations). By contrast, CDD has changed less in summer — four stations had increasing trends, one had a decreasing trend.
While the summer decrease in CWD at ten stations conforms to some empirical and modeling results suggesting decreasing duration
of rain events (Powell and Keim, 2015; Giorgi et al., 2011), our results in other seasons do not provide such evidence, and, in fact,
they are generally opposite to those suggesting longer stretches of dry days (Giorgi et al., 2011; Trenberth, 2011). Our results also
differ from those of (Powell and Keim, 2015), who found an increase in dry spells in the Carolinas. Our results for individual seasons
show decreasing CDD trends in winter, spring, and fall, with only a few stations showing an increase in summer.
7
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Fig. 5. Wet Days trends for every station with 95% of confidence level. Radius scale is proportional to Sen’s slope estimator 𝛽 (days/year); stations with green
markers present positive significant trend, stations with red markers present negative significant trend while, grey markers show stations with no significant
trend. The legend in the bottom left corner shows the maximum, minimum, and average value of 𝛽. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 6. SDII (Simple precipitation intensity index) trends for every station with 95% of confidence level in every season. Radius scale is proportional to Sen’s
slope estimator 𝛽 (mm/day); stations with green markers present positive significant trend, stations with red markers present negative significant trend, while grey
markers show stations with no significant trend. The legend in the bottom left corner shows the maximum, minimum, and average value of 𝛽. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

We measured seasonal maximum 1-, 2-, and 5-day precipitation values in order to account for time of observation differences
and storms of different duration. Seasonal maxima for these intervals was greatest across the Carolinas in summer and fall. For
1-day maxima, high values span across the entire area in fall, and are more concentrated near the coast in summer. At 2-days, the
highest values are typically near the coast during summer and fall. At 5-days, the highest values are spread uniformly across the
region in summer and fall, and more concentrated at higher elevation sites in winter and spring (Supplementary materials, Fig. 3S,
4S, 5S). Few stations had a significant trend in 1-, 2-, and 5-day seasonal maxima. Typically, only 10% of stations had a significant
increasing trend. About 20% of the stations had a significant increasing trend in 5-day maxima during fall, the most of any season
and of the three aggregation periods (Fig. 11). Such trends have potential impacts on flood risk and for water supply management,
8
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Fig. 7. Light rain and SDII trends for every station with 95% of confidence level during winter. Radius scale is proportional to Sen’s slope estimator 𝛽 (days/year)
for light rain and (mm/day) for SDII; stations with green markers present positive significant trend, stations with red markers present significant negative trend,
while grey markers show stations with no significant trend. The legend in the bottom left corner shows the maximum, minimum, and average value of 𝛽. Black
circles in the figures enclose the common clusters between the two different indices. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

particularly for river basins where the practice of drawing down some reservoirs in fall could add additional flooding in the coastal
plain. A handful of stations exhibited decreasing trends, mostly in summer or winter.

There also were very few stations that had significant trends in the 95th-percentile of 1-day rainfall accumulation on wet days.
Four stations had increasing trends in spring, one in summer, two in fall; none of these trends was repeated for the same station
across different seasons. In winter, five stations had significant decreasing trends; none had a significant increasing trend.

4. Summary

Our analysis of century-long precipitation records from forty-four USHCN stations in the Carolinas reveals relatively few
consistent and statistically significant trends across the suite of ETCCDI measures of precipitation amount, frequency, and intensity.
For individual stations, significant trends in a particular variable were not consistent across seasons, and a significant trend found in
one variable was often absent in another similar variable (e.g., 95th-percentile events, vs. annual 1-day maxima). In addition, most
trends had little in common spatially. One exception includes an increase in light precipitation in fall and winter which was positively
9
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Fig. 8. ‘‘Light rain’’ and ‘‘Wet days’’ trends for every station with 95% of confidence level during autumn and winter. Radius scale is proportional to Sen’s slope
estimator 𝛽 (days/year); stations with green markers present positive significant trend, stations with red markers present negative significant trend, while grey
markers show stations with no significant trend. The legend in the bottom left corner shows the maximum, minimum, and average value of 𝛽. Black circles
in the figures enclose the common clusters between the two different indices. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 9. Consecutive wet day trends for every station with 95% of confidence level in every season. Radius scale is proportional to Sen’s slope estimator 𝛽
(days/year); stations with green markers present positive significant trend, stations with red markers present negative significant trend while grey markers show
stations with no significant trend. The legend in the bottom left corner shows the maximum, minimum, and average value of 𝛽. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

correlated with number of wet days and negatively correlated with SDII. This correlation, presented in Fig. 8, was investigated using
a Pearson test with a 95% confidence level. This analysis resulted in a statistically significant relationship across all stations with a
test statistic of 56.0% (confidence intervals = 54.0% to 58.1%). The same test confirmed statistically significant correlation between
light rain and SDII (Fig. 7). Respectively, we estimated a significant correlation of 83% (confidence interval with 𝛼 = 0.05 from
81.4% to 83.3%) during autumn between light rain and wet days and a correlation of 78.7% (confidence interval from 77.5% to
79.8%) between the same indices during winter. The lack of trends in precipitation amount or intensity contrasts with previous
work examining a broader swath of the southeastern United States that documents regional increases in precipitation intensity (Karl
10
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Fig. 10. Consecutive dry day trends for every station with 95% of confidence level in every season. Radius scale is proportional to Sen’s slope estimator 𝛽
(days/year); stations with green markers present positive significant trend, stations with red markers present negative significant trend while grey markers show
stations with no significant trend. The legend in the bottom left corner shows the maximum, minimum, and average value of 𝛽. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Rx5 (Seasonal maximum 5-day precipitation) trends for every station with 95% of confidence level in every season. Radius scale is proportional to
Sen’s slope estimator beta; stations with green markers present positive significant trend, stations with red markers present negative significant trend, while grey
markers show stations with no significant trend. The legend in the bottom left corner shows the maximum, minimum, and average value of 𝛽. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

and Knight, 1998; Easterling et al., 2017; Kunkel et al., 2020b). Our findings do conform, however, to those studies that distinguish
trends within the region and, in particular, suggest a more complicated and/or less robust signal in the Carolinas (Powell and Keim,
2015; Brown et al., 2019; Skeeter et al., 2018; Brown et al., 2020; Kunkel et al., 2020a). Amidst the subtle and mixed signals of
precipitation trends in the Carolinas, a few conclusions emerge from our analysis. First, about one third of the stations examined
show an increase in light rain. This is correlated with an increasing number of wet days and decreasing precipitation intensity as
measured by SDII, an index that explicitly includes the number of wet days in its ratio. While beyond the scope of this paper, these
findings may be related to changes in atmospheric circulation or aerosol concentration and composition affecting regional cloud
processes and rain rates (Qian et al., 2010). Second, all other measures of precipitation intensity suggest that only a small portion
of stations in the Carolinas (typically 10% or fewer) show any significant trend, and a few of these are decreasing. The most notable
11
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exception is an increasing trend in the 2-day (14% of all stations) and 5-day (20% of all stations) fall maxima precipitation; this is
also found in at least one other study (Janssen et al., 2016).

Our detailed look at a relatively small portion of the SEUS allowed us to investigate a longer time frame, more stations, and
wider range of precipitation measures than many other studies of the region. The long period of record includes a range of

nterannual and interdecadal variability. This was evident in many of the ETCCDI measures investigated and made trend detection
ore difficult. Others have noted the complexity of the SEUS precipitation record, guided by tropical ocean variability linked to

he El Niño/Southern Oscillation (Ropelewski and Halpert, 1986; Kiladis and Diaz, 1989; Ropelewski and Halpert, 1989), internal
ariability associated with the North Atlantic subtropical high, sea-surface temperatures, and other drivers (Seager et al., 2009;
oerling et al., 2010; Li et al., 2012; Diem, 2013; Kam et al., 2014; Park Williams et al., 2017; Ferreira and Rickenbach, 2021;
ieto Ferreira and Rickenbach, 2020), as well as interdecadal modulations like the Atlantic Multidecadal Oscillation (Enfield et al.,
001; Gregersen et al., 2014; Hodgkins et al., 2017). Given that some studies have shown trends in the region for shorter periods,
ur results suggest that such trends could depend on record length. Future work could address this issue directly. One limitation of
he long time series is that data sparsity restricts thorough investigation into thermodynamic or dynamic drivers that might influence
rends. Future analysis could investigate statistical relationships between precipitation variability and longer-term indices of ENSO
nd the AMO.

Our analysis considering a longer time frame, more stations, and a wider range of measures contributes to a broader understand-
ng of precipitation changes in the Carolinas. These findings provide a baseline for future climatological investigation, but also have
elevance for adaptation planning. Many communities in the Carolinas have experienced increased flooding in recent years despite
he fact that precipitation trends have been subtle. Since increased flooding could result from multiple factors (e.g., precipitation
mount and intensity, land-use change in a rapidly growing part of the country, sea-level rise in coastal environments), adaptation
ffectiveness demands an understanding of the relative importance of underlying processes. While our analysis shows limited
rends in precipitation measures, concerns and preparation for future changes are prudent. The region likely will experience
igher air temperatures which will increase moisture availability (Kunkel et al., 2020a). Moreover, increasing Atlantic and Gulf
f Mexico sea-surface temperatures will likely fuel evaporation rates for extratropical, convective, and tropical systems that produce
eavy precipitation events. In addition to these thermodynamic drivers, precipitation changes could be driven by dynamic forces,
articularly due to an enhanced North Atlantic subtropical high (Lopez-Cantu and Samaras, 2018; Bishop et al., 2019). In a region
hat regularly experiences profound impacts of interannual precipitation variability on human and physical systems, potential
hanges in the drivers of hydroclimate extremes warrants attention in the next decades.
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